欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

我国半导体电子元器件行业有哪些规律?

乃今也得
马拉松
各行各业都有自身的发展规律,对于电子元器件行业更是有规律可循,下面我们总结了行业发展的三大规律,使用这三大规模能够方便对半导体行业景气发展趋势进行判断。规律一:新旧产品替换推动行业盛衰更替。“杀手级产品”推广进程成为推动行业进入全新繁荣的最核心动力。规律二:库存反映了业者对终端市场的信心,成为导致行业高波动性的最核心原因。规律三:半导体技术发展路径为:创新。精细化分工。技术集成。衰退,这路径直接反映了半导体技术壁垒由强到弱的过程以及技术寿命所处的时机。这三大规律成为我们判断行业发展方向的逻辑立足点。也是我们今年准确预测行业发展方向的主要原因。我们在今年年初向投资者阐述由于“库存回补”将导致半导体行业出现景气反弹的判断,这就是根据规律二思考而得。而我们坚定认为10年三季度后半导体不可能出现V型反转的核心根据就是来自于规律一与规律三。目前行业技术路径位于末端,同时没有创新性产品出现,行业反转势必难成“V型”。事实上,根据这三大规律,我们不难用三大指标来综合判断行业的发展趋势。这些指标分别为:1、杀手级产品。2、行业库存数据。3、技术路线。对行业行业大趋势,我们建议直接跟踪杀手级产品的发展趋势,这些产品的渗透情况也直接表征了行业所处阶段。而这个阶段判断也可以从技术路线来验证。而在短期趋势判断可以根据库存来分析。要记住库存趋势反映了业者对终端消费的判断,这个指标具有一定的超前性。因此,我们对半导体元器件行业景气判断依然是:“2010年上半年行业景气依然温和向上,下半年有望出现加速复苏现象”。杀手级产品2010年下半年密集推出成为推动行业加速的主要因素(注:资料来源于网络)参考资料:http://www.winmax.cc/news/hangye/905.html

问 半导体行业发展历史

身为刑戮
中国半导体发展自新中国发展以来,积累了数代人的心血。曾经的努力与挫折,既奠定上中国半导体工业的基础,又被先进国家拉大了距离。回头再看这一个个中国半导体产业留下的脚印,相信在新的时代,中国的半导体产业会有新的发展。   1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。   1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。   1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI(甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。   1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。   1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。   1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。   1963年,河北省半导体研究所制成硅平面型晶体管。   1964年,河北省半导体研究所研制出硅外延平面型晶体管。   1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。   1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。

【完整版】2020-2025年中国功率半导体器件行业市场细分策略研究报告

其化均也
关山行
去百度文库,查看完整内容>内容来自用户:深圳市盛世华研企业管理有限公司(二零一二年十二月)2020-2025年中国功率半导体器件行业市场细分策略研究报告可落地执行的实战解决方案让每个人都能成为战略专家管理专家行业专家……报告目录2020-2025年中国功率半导体器件行业市场细分策略研究报告第一章企业市场细分策略概述....................................................................................................................5第一节研究报告简介............................................................................................................................5第二节研究原则与方法........................................................................................................................6一、研究原则..................................................................................................................................6二、研究方法..................................................................................................................................6第三节研究企业市场细分策略的重要性及意义................................................................................8一、重要性.........................................................................................................................

求半导体集成电路行业的师兄师姐前辈指导:我考研究生调剂到了微电子的器件设计方向,不知道前景如何?

地中海
这个一般是到科研单位工作,器件设计比较偏向于材料和半导体工艺的研究,目前国内的研究理论成熟,但是设备不成熟(主要靠进口日本和德国的光刻机等)。做超级深亚微米研究还是有一定的研究空间,不过以后有机会最好出国去。此外,工艺设计对经验的要求比较高,需要较多实践。就业的话,在企业的需求还真不是很大,北京和上海,深圳,广州一带相对多点。做SOI器件和大功率器件呢?IC设计企业招器件设计方面的人吗?用soi技术的,一般都是大厂,比如AMD。在那或许还会学习使用一些热加工模型软件,因为芯片工作时很烫嘛!肯定要会仿真。大功率器件设计一般偏向模集一些,当然招人,但是也不是叫你去设计器件模型,那个比较成熟了,还是以设计电路图的居多,建议研究下微机电技术。不知有机会没?

半导体器件常用的仿真模拟软件有什么? 有comsol,还有哪些? 以及它们的优缺点或互补。

狼雨
革命篇
楼主的提问,就有点带偏别人的感觉,或者,你已经被别人带偏了。首先,半导体是一门非常专业的学科,半导体器件仿真肯定需要专业的仿真软件,而通用CAE类的软件是无法解决大多数技术细节问题的,comsol, ansys,abaqus,就是通用CAE软件,据我了解前者在低频电磁,电化学,这一块还可以;中者,包含了很多软件,体系庞大却没好好消化,对这个了解的少,不发表意见;后者,材料,结构、岩土用的多;其次,半导体器件仿真,这行业里站在高处的大牛,还是用TCAD类的软件较多,可以了解下国内主要做半导体的单位,高校、研究所、企业,基本上都是用这些软件,Synopsys的算一个,Crosslight算一个,NEXTNANO算一个,,,,,等等,其实很简单,你把这些软件放在网上一搜别人做的成果就知道哪些软件用的多,出的成果多;不过,像Synopsys这类自己就做半导体的这类厂家,考虑到知识产权和保密问题,有一定的知识壁垒,所以这类的软件傻贵傻贵。NEXTNANO算是比较学术的一个,很久之前是开源的,现在借助他们的学校和研究所,正在走商业化,毕竟要存活嘛;如果要学习TCAD软件也不容易啊,运气好的话,可以碰到技术比较过硬,而且还靠谱的厂家或者工程师,还会多帮忙指导指导;如果碰到只顾卖产品,无技术服务,那就惨了,,,,此为后话,一定要擦亮双眼,多做技术沟通和交流。很多技术型的公司非常乐意做技术交流的,双方互相学习共同提高嘛。国内自己的自主研发的半导体软件,极少啊;国内做大型的工程计算软件,毕竟在前期缺少了知识储备和经验积累,现在别人制裁,就没辙了,哎,扯远了........

半导体行业电子分立器件

殆而已矣
往见老聃
简单说一下哦 (我个人的理解,有不对的请谅解): 半导体行业 广义的说 分上中下游上游主要是: design house (设计公司) , FAB (晶圆制造厂), test house (测试厂)中游主要是: assembly house (封装厂), Subcon (代工厂)下游主要是: SMT (贴片厂), Plant(终端消费品组装厂)当然对应不同环节,还需要各自的供应商链。FAB (晶圆制造厂),晶圆 (wafer) 就是俗称的 晶片、圆片、芯片可以根据尺寸 (晶圆的直径) 分为:4寸,5寸,6寸,8寸,12寸分别对应实际的公制长度约为:(25.4*inch数)mm,简单说就是:4寸约为101.6mm,其它以此类推你说的 10寸,我没有听说过这种规格OEM生产,也称为定点生产,俗称代工(生产),基本含义为品牌生产者不直接生产产品,而是利用自己掌握的关键的核心技术负责设计和开发新产品,控制销售渠道,具体的加工任务通过合同订购的方式委托同类产品的其他厂家生产。之后将所订产品低价买断,并直接贴上自己的品牌商标。这种委托他人生产的合作方式简称OEM,承接加工任务的制造商被称为OEM厂商,其生产的产品被称为OEM产品。你们公司即属此列。ODM是指某制造商设计出某产品后,在某些情况下可能会被另外一些企业看中,要求配上后者的品牌名称来进行生产,或者稍微修改一下设计来生产。这样可以使其他厂商减少自己研制的时间。承接设计制造业务的制造商被称为ODM厂商,其生产出来的产品就是ODM产品。说白了,OEM和OEM的不同点,核心就在于产品究竟是谁享有知识产权,如果是委托方享有产品的知识产权,那就是OEM,也就是俗称的“代工”;而如果是生产者所进行的整体设计,那就是ODM,俗称“贴牌”。做分立器件的,有没有用贝特利清模胶

请问通达信软件行业板块分类半导体和元器件有什么区别啊?

达道之塞
静力场
元器件包含范围更广一些,比如半导体制作的一些器件可以归属于元器件.

为何选硅做半导体材料?多角度分析。

淡之至也
德之钦也
(1)热敏性 半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件半导体的导电性能比导体差而比绝缘体强。实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。 1. 在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。例如,晶体管就是利用这种特性制成的。 2. 当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。 3. 当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。 由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”。 P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。 一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。 图1 在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。 例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。 如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN结)具有像导体一样的导电本领。 图2a 图2b 反过来,如果把P端接到电池的负极,N端接到电池的正极(见图2b)。这时PN结的电阻很大(大到几百千殴),电流(I=U/R)几乎不能通过二极管,或者说通过的电流很微弱。这样的连接方法叫“反向连接”。反向连接时,晶体管二极管(或PN结)两端承受的电压叫“反向电压”;处在反向电压下,二极管(或PN结)的电阻叫“反向电阻”,在反向电压下,通过二极管(或PN结)的电流叫“反向电流”。显然,因为晶体二极管的正向电阻很大(几百千欧姆),在一定的反向电压下,正向电流(I=U/R)就会很小,甚至可以忽略不计,----这表明在一定的反向电压下,二极管(或PN结)几乎不导电。 上叙实验说明这样一个结论:晶体二极管(或PN结)具有单向导电特性。 晶体二极管用字母“D”代表,在电路中常用图3的符号表示,即表示电流(正电荷)只能顺着箭头方向流动,而不能逆着箭头方向流动。图3是常用的晶体二极管的外形及符号。 图3 利用二极管的单向导电性可以用来整流(将交流电变成直流电)和检波(从高频或中频电信号取出音频信号)以及变频(如把高频变成固定的中频465千周)等。 PN结的极间电容----PN结的P型和N型两快半导体之间构成一个电容量很小的电容,叫做“极间电容”(如图4所示)。由于电容抗随频率的增高而减小。所以,PN结工作于高频时,高频信号容易被极间电容或反馈而影响PN结的工作。但在直流或低频下工作时,极间电容对直流和低频的阻抗很大,故一般不会影响PN结的工作性能。PN结的面积越大,极间电容量越大,影响也约大,这就是面接触型二极管(如整流二极管)和低频三极管不能用于高频工作的原因

中国拟全面支持半导体产业?

方将踌躇
在美国限制华为等中国公司获取芯片的背景下,中国正在大力支持本国半导体产业发展。中国正在规划制定一套全面的新政策,以发展本国的半导体产业,应对美国政府的限制,而且赋予这项任务“如同当年制造原子弹一样”的高度优先权。北京正准备在到2025年的5年之内,对“第三代半导体”提供广泛支持。他们说,在中国“十四五”规划草案中增加了一系列措施,以加强该行业的研究、教育和融资。相对于传统的硅材料,第三代半导体以氮化镓、碳化硅、硒化锌等宽带半导体原料为主,更适合制造耐高温、耐高压、耐大电流的高频大功率器件。扩展资料下一个五年计划报道称,中国即将制订下一个五年计划,包括努力扩大国内消费,以及在国内制造关键技术产品。中国已承诺到2025年向无线网络到人工智能等技术领域投入约1.4万亿美元。半导体实际上是实现中国技术雄心的各个环节的根本,而日益激进的美国政府正威胁要切断对中国的供应。研究公司龙洲经讯的技术分析师王丹(音译)表示,“中国意识到半导体是所有先进技术的基础,该国不再能依赖美国的供应,面对美国对获取芯片加紧限制,中国的对策只能是继续推动自己的产业去发展。”参考资料来源:中国经济网-美媒:应对美国政府限制,中国拟全面支持半导体产业